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■ Abstract We review the fluid mechanics and rheology of dense suspensions,
emphasizing investigations of microstructure and total stress. “Dense” or “highly con-
centrated” suspensions are those in which the average particle separation distance is
less than the particle radius. For these suspensions, multiple-body interactions as well
as two-body lubrication play a significant role and the rheology is non-Newtonian. We
include investigations of multimodal suspensions, but not those of suspensions with
dominant nonhydrodynamic interactions. We consider results from both physical ex-
periments and computer simulations and explore scaling theories and the development
of constitutive equations.

1. INTRODUCTION

Suspensions of solid particles in a viscous liquid are ubiquitous, with examples
in biological systems (blood), home products (paint), and industrial processing
(waste slurries). Suspensions are a class of complex fluids and can be further
differentiated according to the physical and chemical nature of the suspended par-
ticles and suspending fluid. We consider here neutrally buoyant, chemically stable
(nonaggregating) hard particles in a Newtonian fluid. The particles are considered
spherical, or at least have a geometric aspect ratio close to one, thus excluding
suspensions of fibers and rods. We are particularly interested in dense suspen-
sions. “Dense” or “highly concentrated” can be defined in a few ways, including:
(a) the average separation distance between the particles is equal to or smaller than
the particle size, (b) multiple-body interactions as well as two-body lubrication
contribute significantly to the rheology of the suspension, and (c) the rheology is
non-Newtonian. We loosely adhere to all of these definitions.

At the length scale of the particles, the mechanics of these systems are governed
by the Navier-Stokes equations. Solutions could theoretically be found for each par-
ticle, but due to the multibody interactions the mathematics becomes complicated
with even just a few. At length scales greater than ∼100-particle radii, it is reason-
able to consider the suspension as a continuum. This is appropriate for most applica-
tions because many suspended particles are less than a few micrometers in diameter.
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The mechanics of dilute and semidilute suspensions are well understood, pri-
marily due to the work of Einstein (1956), Batchelor (1970, 1977), and Batchelor
& Green (1972). However, constitutive equations relating stress to rate of strain for
concentrated suspensions are not generally known, and hence their rheology is still
a subject of much investigation despite a considerable amount of work over the past
century. Experimentation has revealed the unique behavior of fluid suspensions
including shear-thinning and thixotropy, shear-thickening and rheopexy, and yield
stresses (Sato 1995). In particular, there have been numerous studies of suspension
viscosity as a function of particle concentration and composition. So many theoret-
ical and empirical models have resulted that it is difficult to find a unifying theme.
In this review we emphasize that microstructure is the key to understanding the
fluid mechanics and rheology of concentrated suspensions. Microstructure (often
termed simply structure) refers to the relative position and orientation of physical
entities in a material. Microstructure not only provides a means to explain viscosity
relations for suspensions, but it also is vital to the understanding of normal-stress
differences and the development of constitutive equations.

Computer simulations have made a significant contribution to our understanding
of suspension mechanics and rheology. Barnes et al. (1987) gave a comprehensive
review, but simulation methods have progressed considerably since then. The most
widely used method for simulating suspension flow at low-particle Reynolds num-
ber has been Stokesian dynamics (Brady & Bossis 1988, Sierou & Brady 2001),
in which the linear equations describing Stokes flow are simultaneously solved at
discrete time steps for all the particles in the simulation. Other notable simulation
techniques are dissipative particle dynamics (Boek et al. 1997, Hoogerbrugge &
Koelman 1992), the lattice Boltzmann method (Chen & Doolen 1998, Hill et al.
2001), and the Lagrange multiplier fictitious domain method (Glowinski et al.
1999, Singh et al. 2003). We do not explore the details of simulation development
and their use; the references cited above are satisfactory. Instead, we use the re-
sults from computer simulations equally with those from physical experiments to
explore the unique behavior of “dense” fluid suspensions.

We start in section 2 with a brief look at the appropriate dimensional analysis for
suspension rheology. This provides a guide to the variables of interest. Section 3
gives an overview of suspension viscosity studies and a few mathematical relations
that result. In section 4 we discuss the mechanics of concentrated suspensions, and
in section 5 we discuss shear-induced particle diffusion, a special phenomenon of
concentrated suspension flow. Section 6 provides some summary comments and
points the way for future work.

2. DIMENSIONAL ANALYSIS

We begin with the general form of the conservation of linear momentum:

ρ
Dv
Dt

= ρg + ∇ · Π, (1)
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where v is the velocity vector, Π the total stress tensor, ρ the density, and D
Dt

the material derivative. It is often convenient to define a deviatoric stress as τ :=
Π + pI, where p is the pressure and I is the unit tensor. For incompressible
materials, the deviatoric stress is the constitutive stress. It is often related to the
rate of deformation tensor, γ̇ := 1

2 (∇v + (∇v)T ), as

τ = τ (γ̇). (2)

We return to these equations and consider them more fully in sections 4 and 5.
By far, the most widely used flow to probe the rheology and structure of suspen-

sions is shear flow. For a dimensional analysis of shear flow the scalar shear stress,
τ = 1√

2
|τ |, and the rate of deformation, γ̇ = √

2|γ̇|, are used (|A| := √
A : A),

and the viscosity is defined as η := τ
γ̇

. The dimensional analysis given here follows
that of Krieger (1963, 1972) and more recently Jomha et al. (1991).

We consider the viscosity of the suspension as a general function of several
system parameters:

η = f (a, ρp, n, η0, ρ0, kT, γ̇ or τ, t), (3)

where we have particle properties: radius a, density ρp, and number concentration
n; suspending medium properties: viscosity η0 and density ρ0; thermal energy kT ;
the shear variable: shear rate γ̇ or shear stress τ ; and time t . For suspensions with
more than one particle size, the average radius should be used for a, and one or more
additional terms would be necessary to represent the particle-size distribution. All
of the terms in Equation 3 can be expressed in units of mass, length, and time. By
forming dimensionless groups this equation can be reduced to 9−3 = 6 variables:

ηr = f (φ, ρr , Peγ̇ , Reγ̇ , tr ), (4)

where

ηr = η

η0
, φ = 4π

3
na3,

ρr = ρp

ρ0
, Peγ̇ = 6πη0a3γ̇

kT
,

Reγ̇ = ρ0a2γ̇

η0
, and tr = tkT

η0a3
.

We chose γ̇ rather than τ for the shear variable. Equation 4 may be further simplified
for several important cases. For neutrally buoyant systems at steady-state, ρr and
tr may be neglected:

ηr = f (φ, Peγ̇ , Reγ̇ ). (5)

Krieger assumed for his systems (a ∼ 1 µm) that the Reynolds number was
vanishingly small (Reγ̇ → 0) and proposed a semiempirical equation for ηr =
f (φ, Peγ̇ ). Alternatively, we may consider non-Brownian systems for which the
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Figure 1 “Phase diagram” for suspension rhe-
ology, based solely on a dimensional analysis.

Peclet number is very large (Peγ̇ → ∞) and ηr = f (φ, Reγ̇ ). If we assume that
both Peγ̇ and Reγ̇ can be neglected, as have some authors (Chang & Powell 2002,
Probstein et al. 1994, Shapiro & Probstein 1992), then

ηr = f (φ) (6)

only. This implies that the viscosity is a unique value at every concentration and
hence the suspensions are Newtonian. Both Peγ̇ and Reγ̇ can be neglected, i.e.,
Reγ̇ � 10−3 and Peγ̇ � 103 , for only a relatively narrow window of shear rates,
given values of a, η0, and ρ0. The size of this “window” scales according to the
Schmidt number, Sc = Peγ̇

Reγ̇
= 6πη2a

ρ0kT . A suspension may be expected to behave as a
Newtonian fluid for greater ranges of shear rate as particle size and fluid viscosity
increase, such that Sc � 1 (Figure 1). We discuss this more in section 3.

3. SUSPENSION VISCOSITY

There are abundant viscosity versus shear rate (or shear stress) data in the liter-
ature for fluid-particle suspensions (e.g., Figure 2). Non-Newtonian behavior is
generally observed for solids concentrations exceeding 0.4 by volume. Observing
data like these, many authors have found it convenient to assume that concentrated
suspensions are generally shear-thinning with Newtonian limiting behavior at both
low and high shear rates. This is not necessarily the case.

The reported high shear rate limit is a Newtonian plateau before the onset of
shear-thickening as the shear rate increases (Hoffman 1972, Jomha et al. 1991,

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
5.

37
:1

29
-1

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 A

ca
de

m
ia

 S
in

ic
a 

- 
N

an
ki

ng
, T

ai
pe

i o
n 

09
/1

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



10 Nov 2004 11:24 AR AR235-FL37-06.tex AR235-FL37-06.sgm LaTeX2e(2002/01/18) P1: IBD

DENSE SUSPENSION RHEOLOGY 133

Figure 2 Reduced viscosity versus reduced stress for 1 µm spherical particles in the
fluids indicated. Reprinted from Krieger (1972) with permission from Elsevier c©1972.

Metzner & Whitlock 1958, So et al. 2001). Hoffman’s (1972) results clearly il-
lustrate the onset of shear-thickening and are shown in Figure 3. Shear-thickening
behavior has been well-reviewed by Barnes (1989), where he observes “so many
kinds of suspensions show shear-thickening that one is soon forced to the conclu-
sion that given the right circumstances, all suspensions of solid particles will show
the phenomenon.”

Computer simulations of suspension dynamics allow the direct computation
of the stress on each particle, and an ensemble average provides the total stress
for the system. One can then perform simulation “experiments,” which provide
the detailed rheology and microstructure of the suspension. For example, Foss
& Brady (2000) provide simulation results for suspensions in an infinite shear
field for a wide range of Peclet numbers. They find the same shear-thinning and
shear-thickening as observed in laboratory experiments.

Assuming a low shear rate Newtonian limit is also uncertain due to reports
of yield stress behavior for some suspensions (Dabak & Yucel 1987, Heymann

Figure 3 1.25 µm PVC particles in dioctyl phthalate
(Hoffman 1972).
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Figure 4 Representation of relative viscosity
versus shear rate for a fluid suspension.

et al. 2002, Hoffman 1992, Jomha et al. 1991, Nguyen & Boger 1983, Zhu & De
Kee 2002). The concept of a yield stress and its experimental measurement have
been the subject of much debate (Barnes 1999, Heymann et al. 2002, Nguyen &
Boger 1992). Nonetheless, an apparent yield stress has been clearly observed in
suspensions, as indicated by a finite shear stress without deformation over long
experimental time scales, or equivalently by a viscosity that tends toward infinity
at vanishingly small shear rates. Yield stresses have mostly been detected at very
high concentrations (φ > 0.5). Some authors associate yield stress behavior with
a solid-liquid phase transition of the suspensions (Heymann et al. 2002, Jomha
et al. 1991).

We can now draw a qualitative picture of the non-Newtonian viscosity versus
shear rate curve, as shown in Figure 4. In the zero shear rate limit, the suspension
is Newtonian except for the yield stress behavior of very dense suspensions. All
suspensions generally shear-thin at low to intermediate shear rates. With increasing
shear rate, there is a Newtonian plateau and finally a steep shear-thickening region.
The behavior beyond the shear-thickening region is not clear, but some studies
indicate resumed shear-thinning if fracture does not occur first (Barnes 1989,
Hoffman 1972).

To gain further insight into the non-Newtonian rheology of suspensions, it is
useful to consider suspension microstructure. For suspensions of spherical par-
ticles, the microstructure is defined by the positions of the suspended particles
relative to each other. Many different types of configurations are possible, e.g.,
strings, sheets, clumps, and semicrystalline groups; we provide analytical descrip-
tions in section 4. It is now generally accepted that the non-Newtonian behavior
of dense suspensions results from changes in microstructure under shear.

Völtz et al. (2002) photographed the outer surface of a suspension undergo-
ing shearing flow between rotating concentric cylinders. They observed that an
initially random suspension under shear became a two-dimensional hexagonal
structure. This result supports the work of Hoffman (1972) in which he obtained
light diffraction patterns for suspensions undergoing shear. From these diffraction
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patterns he deduced that at low to moderate shear rates, for which the rheology
was shear-thinning, the particles arranged into hexagonal packed sheets that slid
over one another. At higher shear rates, with the onset of shear-thickening, the
diffraction patterns did not indicate any organized structure. Unfortunately, Völtz
et al. (2002) do not report shear-thickening results.

Based on the dimensional analysis of section 2, it seems reasonable to con-
clude that suspensions are shear-thinning when Peγ̇ is significant, shear-thickening
when Reγ̇ dominates, and Newtonian for a region where both can be neglected
(Figure 1). This is supported by the microstructure results, which indicate ordered
structure at low shear rate and disordered structure at high shear rate. However,
Hoffman’s (1972) suspensions begin to show shear-thickening behavior while still
in the Peclet-dominated regime (Peγ̇ = 2 × 102, Reγ̇ = 5 × 10−8), although
the suspensions of Völtz et al. (2002), which were shear-thinning for all of the
shear rates tested, were in a region where finite Reynolds numbers are important
(Peγ̇ = 8 × 107, Reγ̇ = 1 × 10−2). Clearly, neither the Peclet number nor the
Reynolds number fully determine suspension rheology. Suspension microstruc-
ture dictates the rheology, and we must consider all factors that influence mi-
crostructure. While structure will certainly be a function of Peγ̇ and Reγ̇ , particle
polydispersity, particle roughness, electrostatic, and van der Waals forces are also
important. Although there are often attempts to minimize these nonhydrodynamic
factors in laboratory experiments, their presence, no matter how small, can greatly
affect the microstructure (Brady & Morris 1997).

Numerous authors have generated plots of relative suspension viscosity versus
solids volume concentration in an attempt to correlate the two. In many early stud-
ies, neither the shear rates employed nor the particle polydispersity were carefully
considered. Hence, the scatter in these correlations is quite severe (Rutgers 1962).
Some investigators performed experiments exclusively in what they considered
the low shear rate Newtonian limit (Chong et al. 1971, Krieger 1972, Storms et al.
1990) or alternatively in the high shear rate Newtonian limit (Chang & Powell
2002, Probstein et al. 1994).

Intuitively, the relative viscosity of a suspension will approach infinity as the
volume fraction (φ) approaches some maximum value (φm):

lim
φ→φm

ηr = ∞. (7)

Physically, φm equates to the maximum packing fraction possible for a given
suspension composition and packing arrangement. However, φm is often used as
an adjustable parameter in viscosity models of the form

ηr = f

(
φ

φm

)
. (8)

In this sense, it is simply a direct scalar measure of suspension microstructure.
The maximum packing fraction was not included in the dimensional analysis of
section 2 because it is not an independent system variable. It depends on all the
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Figure 5 Relative viscosity as a function of reduced volume fraction. The line graphs
correspond to models presented in the text, with φm = 0.65 and [η] = 2.5. The symbols
correspond to data presented in Chang & Powell (Chang & Powell 1994a).

parameters mentioned above that affect the microstructure of suspensions. By
plotting ηr versus φ/φm and using appropriate values for φm , viscosity versus
concentration plots collapse onto one curve (Figure 5) (Chang & Powell 1994a,
Chang & Powell 2002, Chong et al. 1971, Wildemuth & Williams 1984).

When modeling the viscosity versus concentration relationship for suspensions,
one must consider non-Newtonian behavior. One possible approach is to restrict
ourselves to the high (or low) shear rate Newtonian regions, as depicted in Figure 4.
The alternative is to include a shear rate–dependent term in the model, as discussed
below. For a Newtonian fluid containing a dilute suspension of monodisperse
particles (φ → 0), Einstein (1956) showed:

ηr = 1 + [η]φ + O(φ2), (9)

where [η] = 5
2 for hard spheres. Batchelor (1977) and Batchelor & Green (1972)

extended this relationship to second order:

ηr = 1 + [η]φ + Bφ2 + O(φ3), (10)

where B = 6.2 for Brownian suspensions in any flow, and B = 7.6 for non-
Brownian suspensions in pure straining flow.

For general models of relative viscosity versus particle concentration, it is worth-
while to consider how the model behaves in the limits of both high and low con-
centration. The limit of high concentration is given as Equation 7. At small φ, a
relative viscosity function should take on the form of Equation 9:

lim
φ→0

ηr − 1

φ
= [η]. (11)
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One empirical formula that obeys both the high and low concentration limits was
given by Eilers (Ferrini et al. 1979):

ηr =
(

1 +
1
2 [η]φ

1 − φ/φm

)2

. (12)

Another satisfactory model was derived by Krieger and Dougherty (1959). They
considered the viscosity increase due to adding particles to a suspension already
containing particles and obtained:

ηr =
(

1 − φ

φm

)−[η]φm

. (13)

The form of Equation 13 can also be credited to Maron & Pierce (1956), although
their exponent is given as −2 and hence does not explicitly satisfy Equation 11.
Many other functions have been proposed and provide excellent fits to experimen-
tal data (Chong et al. 1971, Frankel & Acrivos 1967, Mooney 1951, Sengun &
Probstein 1989). Characteristic plots of the viscosity versus concentration func-
tions presented here are overlaid on experimental data in Figure 5.

The a priori prediction of the maximum packing fraction, φm , for a system of
particles is still an open question, despite much study. By considering different
geometric arrangements of monomodal spheres, a range of theoretical values for
φm can be obtained, from the simple cubic value of 0.524 to the hexagonal close-
packed value of 0.740 (Torquato et al. 2000). A well-mixed suspension does not
self-assemble into one of the theoretical arrangements but instead forms a so-called
random close-packed (RCP) arrangement. Settling experiments were used to find
φm ≈ 0.63 for RCP (McGeary 1961).

For multimodal systems, it is more difficult to arrive at a theoretical value of φm .
Qualitatively, small spheres may fit into the spaces between packed large spheres.
Experiments of bimodal systems bear this out: φm increases with size ratio up to
about 10:1, at which point the small spheres can completely fit into the empty spaces
of the packed large spheres (McGeary 1961). The volume fraction ratio between
large and small spheres is also important, with maximum packing obtained at about
60%–75% large particles (McGeary 1961, Shapiro & Probstein 1992). Trimodal,
multimodal, and polydisperse systems can obtain even higher packing fractions.
Models of packing fraction versus particle size distribution have been developed
but are not reproduced here (Ouchiyama & Tanaka 1981, Zou et al. 2003).

Rheological experiments with bimodal, multimodal, and polydisperse systems
emphasize the relation between φm and suspension viscosity. As expected, at equal
total particle volume fraction the viscosities of multimodal systems are correspond-
ingly lower than for their monodisperse counterparts, as Figure 6 shows (Chang
& Powell 1994a, Chang & Powell 1994b, Chong et al. 1971).

Wildemuth & Williams (1984) propose an explicit flow dependence for φm .
This is appealing because φm is a measure of microstructure, and microstructure
changes with flow. Wildemuth & Williams (1984) derive a relationship where φm
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Figure 6 Relative viscosity versus fraction of small spheres, ξ , for fixed area fraction,
φa = 0.6, resulting from two-dimensional simulations (Chang & Powell 1994b). The
symbols correspond to different size ratios and different simulation techniques.

is a function of shear stress and monotonically increases from φm0 at τ = 0 to φm∞
as τ → ∞:

φm =
[

1

φm0

−
(

1

φm0

− 1

φm∞

) (
1

1 + Aτ−m

)]−1

. (14)

When substituted into an appropriate ηr versus φ/φm relationship, the result is a
model that gives viscosity as a function of particle concentration and shear rate. As
given, their equation for φm(τ ) predicts shear-thinning behavior and a yield stress.
If a suspension had a concentration, say φ1, which was greater than φm0 (but lower
than φm∞ ), it would not deform unless it were experiencing a shear stress greater
than that required for φm(τ ) to equal φ1. This stress is the yield stress, and it is
clearly a function of concentration.

Another form for the relationship between suspension viscosity and shear rate
is due to Krieger & Dougherty (1959) and Cross (1970):

ηr = η∞ + η0 − η∞
1 + aDn

, (15)

where D = τ for Krieger and Dougherty (1959), and D = γ̇ for Cross (1970).
This model can generally be used to fit a shear-thinning viscosity. Cross (1970)
also proposed a modified form for shear-thickening suspensions. Volume fraction
dependency can be incorporated by letting η∞ = η∞(φ) and η0 = η0(φ) in the
form of Equation 13 (Krieger 1972).

Changes in suspension microstructure with flow are not instantaneous and give
rise to time-dependent suspension rheology. Thixotropic behavior is common when
a suspension thins with shear (Chang & Powell 1994a, Gadala-Maria & Acrivos
1980, Narumi et al. 2002, Voltz et al. 2002), and rheopectic behavior is common
when a suspension shear-thickens (Barnes 1989, Hoffman 1974).
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4. SUSPENSION MECHANICS

The shear viscosity of a suspension only partly characterizes its rheology. The
entire stress tensor must be considered. This can be decomposed into the sum of
three parts:

Π = −poI + 2ηoγ̇ + Πp. (16)

For the suspension systems considered here, po is the isotropic suspending fluid
pressure, ηo is the viscosity of the Newtonian suspending fluid, and Πp is the
stress contribution from the suspended particles. We generally limit our discussion
to simple shear flow. The rheology of suspensions in other types of flow, e.g.,
extensional flow, has not been well studied but is mentioned briefly elsewhere
(Barnes 1989). For shear flow, the diagonal elements of γ̇ are identically zero,
and the normal stress differences of the total stress tensor are given as: N1 :=
�11 − �22 = �p,11 − �p,22 and N2 := �22 − �33 = �p,22 − �p,33, where the
flow, velocity gradient, and vorticity are in the 1, 2, and 3 coordinate directions,
respectively. A particle phase isotropic pressure is also of interest, and is defined
as pp := − 1

3 tr(Πp). This pressure arises from the osmotic pressure induced by the
particles, inter-particle forces, and flow-induced hydrodynamic normal stresses.
The total isotropic pressure is then p = po + pp.

It is well known that polymer solutions give rise to a positive N1 and a smaller,
negative N2 (Tanner 1992). Normal-stress differences for suspensions are difficult
to measure experimentally. Recently, Zarraga et al. (2000) performed a compre-
hensive study of suspension normal stresses using three different experimental
techniques. For their non-Brownian suspensions, they show that both N1 and N2

are negative and proportional to shear stress, with |N2| > |N1|. In addition, they
report that the flow induces a positive particle phase pressure.

Foss & Brady’s (2000) simulation of an unbounded suspension undergoing
shear flow also shows that N2 is negative for all Peclet numbers simulated. How-
ever, N1 is positive for low Peγ̇ and negative for high Peγ̇ , crossing zero at
Peγ̇ ∼ O(1) (Figure 7). Singh & Nott (2000) performed dynamic simulations
of a monolayer of non-Brownian suspended particles undergoing shear between
semi-infinite plates. The resulting viscosity and first normal stress difference agree
well with those of Zarraga et al. (2000) and Foss & Brady (2000) (for high Peγ̇ ).

Non-Newtonian stresses are generally caused by the microstructure. For fluids
containing rods or polymers, normal stress differences arise from flow-alignment
and/or stretching (Tucker & Moldenaers 2002). But hard spheres neither deform
nor have a preferred direction. Instead, suspension microstructure is entirely dic-
tated by the spatial arrangement of the particles, as discussed in section 3. There-
fore, normal stress differences for suspensions arise from particle arrangements
that have preferred directions. The microstructure of suspensions of hard spheres
can be described by the pair-distribution function, g(r). It describes the probability
of finding a particle at position r relative to a reference particle, normalized by
the number concentration of the suspension (Morris & Katyal 2002). Well-mixed
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Figure 7 First normal stress difference for Stoke-
sian dynamics simulation of 27 particles at φ = 0.45
(Foss & Brady 2000).

suspensions with no flow history are generally isotropic, for which the pair dis-
tribution function only has a radial dependency caused by size exclusion. When a
suspension undergoes flow, the particles may arrange to form an anisotropic con-
figuration where there is a higher probability of finding particles in some directions
than others, giving rise to an angular dependency.

The pair-distribution function can be determined from experiment if the position
of each particle is known. However, large numbers of particles or long run times
are needed for statistically significant results. Parsi & Gadala-Maria (1987) and
Rampall et al. (1997) photographed suspensions undergoing shear and constructed
the pair-distribution function in the shear plane. Fore-aft asymmetry was observed,
but few other conclusions could be drawn from the data. The observed fore-aft
asymmetry in g(r) indicates that particle pairs spend more time in their approach
than in their departure from one another. Suspension microstructure, including
anisotropy, can also be measured by light-scattering and small-angle neutron-
scattering experiments (Maranzano & Wagner 2002, Wagner & Russel 1990). Data
from these experiments can be related to the pair-distribution function through a
Fourier transform (Wagner & Ackerson 1992).

Computer simulations are particularly useful for understanding the dynamics
of microstructure and its connection to rheology. As part of the computations, the
positions of all the particles are exactly known at each time step. By averaging
over many time steps, the full three-dimensional pair-distribution function can be
obtained (Foss & Brady 2000, Morris & Katyal 2002, Sierou & Brady 2002).
For a particular set of simulation conditions, Figure 8a shows the pair-distribution
function projected onto the flow gradient (1,2 or x,y) plane. The size exclusion
radial dependency is clearly observed by the definite shells of higher probability.
Of the two inner shells shown in the plot, note the buildup of particle pairs on the
compressional axis and depletion on the extensional axis. In a study of varying
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Figure 8 (a) Pair-distribution function projected onto the flow gradient plane for
φ = 0.4 (Sierou & Brady 2002). Lighter gray corresponds to higher probability.
(b) Contour plot of g(r) in the flow gradient plane for φ = 0.3 and Peγ̇ = 25 (Morris
& Katyal 2002).

Peclet number, Morris & Katyal (2002) found that at elevated Peγ̇ , g(r) distorts to
that illustrated in Figure 8b.

Batchelor (1977) and Batchelor & Green (1972) developed the first theoretical
treatment of suspension fluid mechanics beyond the dilute limit. They demon-
strated the explicit use of particle configuration probability, or the pair-distribution
function, in determining the particle phase stress. Exact solutions for suspension
viscosity were presented for semidilute suspensions in specific types of flow. Oth-
ers proceeded to determine the normal stress differences and particle pressure as
they first appear in dilute suspensions (Brady & Vicic 1995).

Determining g(r) for nondilute suspensions in arbitrary flow fields is quite
difficult. To our knowledge, only gross approximations and scaling analyses have
been reported. In the asymptotic limit φ → φm for Peγ̇ � 1, the stress is dominated
by the Brownian contact stress:

ΠB1
p = −4n2kT a3g0(2a)

∮
r̂r̂ f (r) dΩ, (17)

where r̂ is the unit vector in direction r, g0(r ) is the pair distribution function at
equilibrium, and f (r) := g(r)/g0(r ) − 1 (Brady 1993, Brady & Vicic 1995). By
evaluating perturbations of f (r) with flow, an approximation for the components
of Πp can be determined to first order in Peclet number:

ηr ∼ 1.3β−2 + O(Pe
2
), (18)

N1

ηγ̇
∼ 0.51β−2Pe + O(Pe

2
), (19)

N2

ηγ̇
∼ −0.36β−2Pe + O(Pe

2
), (20)
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and
pp

nkT
∼ 2.9β−1 + 0.27β−1Pe

2 + O(Pe
5/2

), (21)

where β := (1 − φ

φm
) (Brady & Vicic 1995). Pe = γ̇ a2

Ds
0(φ) is a Peclet number that

scales with the concentration dependent short-time self-diffusivity, Ds
0(φ). This

analytical result agrees with the simulation work of Foss & Brady (2000).
Brady & Morris (1997) show that the limit Peγ̇ → ∞ is singular and that any

amount of Brownian motion, surface roughness, or nonhydrodynamic repulsion
results in an asymmetric g(r) and non-Newtonian stresses. They do not give an
analytical result for g(r) at high particle concentrations, but present a scaling
analysis for g(r) in a boundary layer about g(2a) and comment on the possible
values for the normal stress differences, specifically: N1 ≈ 0, and N2 < 0.

Alternatively, terms that approximate the microstructure can be used for anal-
ysis and forming constitutive equations. Phan-Thien (1995) and Phan-Thien et al.
(1999) considered concentrated suspensions to be composed of doublets of neigh-
boring particles. With the unit vector connecting two particles in a doublet given
by r̂, the structure tensors Y2 := 〈r̂r̂〉 and Y4 := 〈r̂r̂r̂r̂〉 can be defined. Their
theoretical development results in a constitutive equation for the particle phase
pressure:

Πp = η(φ)[(1 − ξ )γ̇ : Y4 + γ̇ (K · Y2 + Y2 · K + tr(K)Y2 − 2K : Y4)]. (22)

ξ is a scalar value that depends on the separation distance of the sphere pair, and
for touching spheres ξ = 0.63. Modeling of transient flows requires evolution
equations for Y2 and Y4, which are also provided. The term K, a dimensionless
tensor that is a measure of anisotropy in particle self-diffusion (see section 5),
was left partially undetermined by the authors. Phan-Thien et al. (2000) propose
a phenomenological model for K:

K = K3I + (K1 − K3)
2A(1) · A(1)

tr(A(1) · A(1))
+ (K2 − K1)

A(2) · A(2)

tr(A(2) · A(2))
, (23)

where A(1) = 2γ̇ and A(2) = D
Dt A(1) + ∇v · A(1) + A(1) · (∇v)T are the first two

Rivlin-Ericksen tensors. Ki , i = 1, 2, 3, are constants that have certain restrictions
for K to be positive semidefinite. Even so, different sets of Ki greatly influence
the computed normal stress differences, including their sign (Phan-Thien et al.
2000). The model has proven quite good, at least qualitatively (Narumi et al. 2002,
Phan-Thien et al. 2000).

5. SHEAR-INDUCED PARTICLE DIFFUSION

Shear-induced self-diffusion and particle migration in suspension flow has received
considerable interest, starting principally with the work of Leighton & Acrivos
(1987). They performed experiments that showed a diffusion-like process in which
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particles migrate from regions of high shear rate to regions of low shear rate, even
though their systems were non-Brownian and noninertial. It is well known that
the trajectories of two isolated, interacting spheres undergoing Stokes’ flow are
symmetric and reversible. However, the simultaneous interactions of three or more
spheres can lead to asymmetric net displacements that are irreversible (Breedveld
et al. 2002, Drazer et al. 2002).

In a more general argument, Mauri (2003) refers to the Loschmidt paradox
where microscopic reversible motion results in irreversible macroscopic phenom-
ena. The paradox is resolved when one accounts for any small uncertainty or loss of
information in the scaling from microscopic to macroscopic dynamics. In support
of these arguments, Drazer et al. (2002) used simulations to explicitly measure the
chaotic nature of suspension flow.

Although self-diffusion and bulk particle migration have the same origin, they
have mostly been treated separately. Self-diffusion refers to the stochastic drift of
tracer particles in uniform flow fields. Both computer simulations and physical
experiments have shown that the average squared displacement of particles, minus
the bulk flow displacement, grows linearly with dimensionless time, γ̇ t (Breedveld
et al. 2001, Marchioro & Acrivos 2001). Particle velocity fluctuations, v′, have also
been measured from which a “suspension temperature” can be defined: T = 〈v′v′〉
(Shapley et al. 2002). All together, these demonstrate a diffusion process, but on
longer time scales than the Brownian motion. This self-diffusion is anisotropic,
necessitating the use of a self-diffusion tensor (Breedveld et al. 2002, Foss & Brady
1999). Specifically, Breedveld et al. (2002) suggest:

Ds
∞ = γ̇ a2D̂(φ), (24)

where D̂(φ) is a dimensionless symmetric tensor. The γ̇ a2 scaling agrees with the
theoretical treatment of Brady & Morris (1997). The φ dependence for the nonzero
components of D̂ is less clear but is illustrated in Figure 9. The analysis of Brady &
Morris (1997), where the development of microstructure is carefully considered,
does predict D̂xx > D̂yy > D̂zz and D̂xy < 0 (Foss & Brady 1999). However,
all components of Ds

∞ are expected to increase with φ, which is not in agreement
with the experimental results shown in Figure 9.

There is likely a direct connection between D̂ and the K of Equation 23. This
has not yet been explored but could prove useful in constitutive models. It also
illustrates a connection between the particle stress and shear-induced particle dif-
fusion.

Shear-induced particle migration refers to the bulk migration of particles in
nonuniform flows, as observed in many studies (Chow et al. 1994, Frank et al.
2003, Hampton et al. 1997, Nott & Brady 1994, Phan-Thien et al. 1995, Phillips
et al. 1992). The net effect is inhomogeneous particle concentration, and there-
fore it is important in many practical applications. A few constitutive equations
have been proposed to include particle migration. Based on the work of Leighton
& Acrivos (1987), Phillips et al. (1992) developed a model that includes a par-
ticle flux term that is proportional to the shear gradient. This “diffusive flux”
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Figure 9 Concentration dependence for the
nonzero components of D̂ (Breedveld et al.
2002). Note that D̂xy is negative.

model provides satisfactory results for Couette & Poiseuille flow, but is inade-
quate for other viscometric flows, specifically the parallel plate and cone-and-plate
geometries.

Another modeling approach employs mass and momentum balances over both
the particle phase and the total suspension (Nott & Brady 1994). In this model the
particle flux arises directly from the particle stress:

Np = h(ηs, a, φ)∇ · Πp, (25)

where h(ηs, a, φ) is a hindered mobility coefficient (Fang et al. 2002, Morris &
Boulay 1999). A constitutive equation for Πp is required, for which Morris &
Boulay (1999) and Fang et al. (2002) used simple approximations based on exper-
imental data and scaling analyses (see section 4). Nonetheless, this “suspension
balance” model provides excellent predictions of concentration and velocity pro-
files for several flow types (Figure 10) (Fang et al. 2002).

6. CONCLUDING REMARKS

Work over the last decade has provided significant insight into the mechanics of
concentrated suspensions. Most efforts have focused on one particular aspect of
suspension rheology, such as viscosity correlations, normal stress behavior, or par-
ticle migration. To obtain working models for use in flows of arbitrary geometry,
all of these need to be considered together. Due to the complex and sometimes con-
tradictory behavior reported in the literature, constitutive modeling of suspension
fluid mechanics has been difficult. Nonetheless, considerable progress has been
made by considering the suspension microstructure, which provides a physical
rationale for the complex rheology of dense suspensions. Its inclusion has proved
useful, even in simple semiempirical viscosity correlations where only a scalar
description is necessary.
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Figure 10 Suspension balance model prediction and experimental data for the trun-
cated cone-and-plate geometry. Circles correspond to φb = 0.33 and squares to
φb = 0.50 (φb = bulk volume concentration). Reprinted from Fang et al. (2002)
with permission from Elsevier c©2002.

The full analytical treatment of suspension microstructure and its evolution
with flow is quite complicated because the complete microstructure is given by
the exact positions of all the particles. A more manageable description is required,
with the most commonly used being the pair distribution function. Unfortunately,
there has been only limited success in using the pair-distribution function in consti-
tutive equations. Alternatively, Phan-Thien et al. (1999) used tensor descriptions
of microstructure in forming a complete constitutive equation for particle stress
with some success (Equation 22).

There has also been progress in the constitutive modeling of shear-induced par-
ticle migration. In particular, the suspension balance model gives accurate predic-
tions for several flow geometries. This model demonstrates that particle migration
arises from the particle stress (Equation 25), emphasizing the need for an adequate
particle stress constitutive equation. Although microstructure does not appear ex-
plicitly in the suspension balance model, there is an implicit dependence due to
the particle stress.

The above-mentioned constitutive equations were developed for monodisperse
particle suspensions only. Although the shear viscosity of multimodal suspen-
sions has been studied, there is no published work on the total particle stress and
shear-induced diffusion of such systems. In addition, the prominent descriptions
of microstructure, such as the pair distribution function, are not easily applied to
multimodal suspensions. We do know how φm , an isotropic measure of microstruc-
ture, varies with polydispersity. A more complete description of suspension mi-
crostructure for multimodal systems needs to be developed that can then be used
in constitutive models.

Lastly, a new generation of experiments that map both velocity and concentra-
tion fields in more complex flows would prove useful, e.g., flow in contraction and
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expansion geometries. Some work has already been done with eccentric rotating
cylinders (Phan-Thien et al. 1995), but data for suspensions in a wider range of non-
viscometric flows are lacking. This will help in the development and verification
of new constitutive models.
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